Cis and Trans Regulatory Mechanisms Control AP2-Mediated B Cell Receptor Endocytosis via Select Tyrosine-Based Motifs

نویسندگان

  • Kathleen Busman-Sahay
  • Lisa Drake
  • Anand Sitaram
  • Michael Marks
  • James R. Drake
چکیده

Following antigen recognition, B cell receptor (BCR)-mediated endocytosis is the first step of antigen processing and presentation to CD4+ T cells, a crucial component of the initiation and control of the humoral immune response. Despite this, the molecular mechanism of BCR internalization is poorly understood. Recently, studies of activated B cell-like diffuse large B cell lymphoma (ABC DLBCL) have shown that mutations within the BCR subunit CD79b leads to increased BCR surface expression, suggesting that CD79b may control BCR internalization. Adaptor protein 2 (AP2) is the major mediator of receptor endocytosis via clathrin-coated pits. The BCR contains five putative AP2-binding YxxØ motifs, including four that are present within two immunoreceptor tyrosine-based activation motifs (ITAMs). Using a combination of in vitro and in situ approaches, we establish that the sole mediator of AP2-dependent BCR internalization is the membrane proximal ITAM YxxØ motif in CD79b, which is a major target of mutation in ABC DLBCL. In addition, we establish that BCR internalization can be regulated at a minimum of two different levels: regulation of YxxØ AP2 binding in cis by downstream ITAM-embedded DCSM and QTAT regulatory elements and regulation in trans by the partner cytoplasmic domain of the CD79 heterodimer. Beyond establishing the basic rules governing BCR internalization, these results illustrate an underappreciated role for ITAM residues in controlling clathrin-dependent endocytosis and highlight the complex mechanisms that control the activity of AP2 binding motifs in this receptor system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clathrin promotes incorporation of cargo into coated pits by activation of the AP2 adaptor μ2 kinase

Endocytic cargo such as the transferrin receptor is incorporated into clathrin-coated pits by associating, via tyrosine-based motifs, with the AP2 complex. Cargo-AP2 interactions occur via the mu2 subunit of AP2, which needs to be phosphorylated for endocytosis to occur. The most likely role for mu2 phosphorylation is in cargo recruitment because mu2 phosphorylation enhances its binding to inte...

متن کامل

YRRL motifs in the cytoplasmic domain of the thrombopoietin receptor regulate receptor internalization and degradation.

Thrombopoietin (Tpo), acting through the c-Mpl receptor, promotes the survival and proliferation of hematopoietic stem and progenitor cells and drives megakaryocyte differentiation. The proproliferation and survival signals activated by Tpo must therefore be tightly regulated to prevent uncontrolled cell growth. In this work, we determined the mechanisms that control Tpo-stimulated c-Mpl intern...

متن کامل

Phosphorylation of the AP2 μ subunit by AAK1 mediates high affinity binding to membrane protein sorting signals

During receptor-mediated endocytosis, AP2 complexes act as a bridge between the cargo membrane proteins and the clathrin coat by binding to sorting signals via the mu 2 subunit and to clathrin via the beta subunit. Here we show that binding of AP2 to sorting signals in vitro is regulated by phosphorylation of the mu 2 subunit of AP2. Phosphorylation of mu 2 enhances the binding affinity of AP2 ...

متن کامل

Protein targeting by tyrosine- and di-leucine-based signals: evidence for distinct saturable components

Targeting of transmembrane proteins to lysosomes, endosomal compartments, or the trans-Golgi network is largely dependent upon cytoplasmically exposed sorting signals. Among the most widely used signals are those that conform to the tyrosine-based motif, YXXO (where Y is tyrosine, X is any amino acid, and O is an amino acid with a bulky hydrophobic group), and to the di-leucine (or LL) motif. S...

متن کامل

The role of GABAAR phosphorylation in the construction of inhibitory synapses and the efficacy of neuronal inhibition.

GABA(A)Rs [GABA (gamma-aminobutyric acid) type-A receptors] are heteropentameric chloride-selective ligand-gated ion channels that mediate fast inhibition in the brain and are key therapeutic targets for benzodiazepines, barbiturates, neurosteroids and general anaesthetics. In the brain, most of the benzodiazepine-sensitive synaptic receptor subtypes are assembled from alpha(1-3), beta(1-3) and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013